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Abstract The effects of steady fluid flow through double bell-shaped constrictions in tubes were
investigated numerically for the Reynolds number range of 5 to 400. The double constrictions
studied were for similar first and second constrictions of 1/3, 1/2 and 2/3. A dimensionless
constriction spacing of 1.0 was considered. Study showed that the major part of the mean
dimensionless pressure drop in the constricted tube occurs predominantly across the first
constriction when flow moves towards the valley region formed by the two constrictions. Minimum
pressures along the constricted tubes occurs downstream of each constrictions. When the
constriction magnitudes increased, the pressure drop across the same length of the tube increases
exponentially. The effect of increasing the Reynolds number for all the constriction values
considered here is to increase the spreading of the recirculation region between the valley region of
the constrictions. The recirculation region formed between the two constrictions has a deminishing
effect on the generation of wall vorticity near the second constriction. The effects are more
pronounce when the recirculatory flow from the first constriction has spread over the second
constriction. In general, a peak wall vorticity is found slightly upstream of each of the constrictions.
When the Reynolds number is increased, the peak wall vorticity increases and its location
moved upstream. It is noted for the cases considered here that the peak wall vorticity generated by
the first constriction is always greater than the peak wall vorticity generated by the second
constriction.
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Nomenclature
a0 ¼ radius of the constant cross section

of the tube
c1 ¼ dimensionless up-stream (first)

constriction, c1 ¼ ðd 2 d1Þ=d
c2 ¼ dimensionless down-stream (second)

constriction, c2 ¼ ðd 2 d2Þ=d
d ¼ diameter of constant cross section

of the tube
d1 ¼ diameter of the tube at the first

constriction
d2 ¼ diameter of the tube at the second

constriction
L ¼ length of the tube
l1 ¼ location of up-stream (first)

constriction
l2 ¼ location of down-stream (second)

constriction

P0 ¼ axial static pressure at inlet
Pmin ¼ minimum pressure
P* ¼ dimensionless pressure,

P* ¼ ðP 2 P0Þ=ðrv2
0Þ

DP ¼ mean dimensionless pressure
difference between two point,

(r, z ) ¼ co-ordinates variables in the
original cylindrical co-ordinate
system

Re ¼ Reynolds number, Re ¼ v0a0=y
S ¼ dimensionless spacing between

constrictions, S ¼ ðl2 2 l1Þ=d
t ¼ time
u ¼ radial velocity component
v ¼ axial velocity component
v0 ¼ centreline velocity at inlet

plane
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Introduction
The flow field in the neighbourhood of various shapes of constriction in tubes
are of great interest to fluid dynamicists and engineers. This type of tube
configuration is used in heat exchangers in order to enhance its heat transfer
performances. The wavy configuration of tubes has also been of great interest
to biofluid dynamicists because of its relationship to localised stenoses; blood
and urinary flow; and for the optimal design of artificial organs. Viscous fluid
flow past wavy boundaries has also been of great interest to engineers and
researchers because of the importance it plays in phenomena such as: the
generation of wind waves on water; the stability of a liquid film in contact with
a gas stream; the transpiration cooling of re-entry vehicles and rocket boosters;
film vaporization in combustion; fluid flow in pipes with fittings.

An early numerical work on constriction in tube was first done by Lee and
Fung (1970). A bell-shaped constriction specified by a Gaussian normal
distribution curve was used to simulate flow in locally constricted tubes.
Reynolds number in the range of 0 to 25 was considered. Numerical instability
in the solution procedure prevented the investigation from extending to higher
Reynolds Number. Similar numerical studies were carried out by Oberkampt
and Goh (1974). An outflow type of boundary condition was used by Lee &
Fung, whilst Oberkampt & Goh used an infinity condition. Constrictions with
other type of shapes such as a sinusoidal function was used by Despande et al.
(1976) to model the steady laminar flow through vascular stenoses. The
separating flow through a severely constricted symmetric tube was studied
analytically. The main separation was shown to take place on the upstream
constriction surface. Sobey (1980) studied numerically the flow through
furrowed channels and investigated the Reynolds number effects on the
separated flow. Patankar et al. (1977), Sparrow and Prata (1983) and Prata and
Sparrow (1984) obtained numerical solutions for a periodic fully developed
sinusoidal flow regime in an annulus of varying cross section of a double-pipe
in a heat exchanger. On the basis of the computed heat transfer coefficients and
pressure drops, the periodic sinusoidal undulating annulus appears to be an
attractive enhancement configuration relative to the annulus of axially
unchanging cross section. Other related studies of constricted flow includes a
study of laminar steady flow in sinusiodal channels by Tsangaris and Leiter
(1984) using a perturbation technique. Dreumel and Kuiken (1989) did a

Greek symbols
c ¼ stream function
z ¼ vorticity
(zw)max ¼ Peak wall vorticity
r ¼ density
n ¼ kinematic viscosity
v ¼ relaxation factor in SOR

(h, e ) ¼ co-ordinates variables in the
transformed co-ordinate
system

Subscripts
w ¼ wall
c ¼ centreline
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numerical and experimental study on flow past a double stenosis tube. Sharp
edges were used in the experimental set-up for the coronary stenosis (62 per
cent) and flow was analyzed for Re in the range of 50–400. For low Re, the total
effect of 2 stenosis was noted to be equals to twice that of a single one for the
pressure distribution.

More recently in the 1990s, Johnston and Kilpatrick (1991) did a similar
analysis of flow through an irregularly shaped arterial stenosis with area
reduction varying from 48 per cent to 87 per cent. Cheng et al. (1992) revised the
problem of flow through stenosis by considering a steady flow under finer
mesh and more realistic Reynold number conditions. The effect of varying the
degree of stenosis, structure length, Reynolds Number was studied. Najeme
et al. (1992) did a numerical analysis of flow over stenoses with an asymptotic
method for low as well as large Reynolds Number of 1000. The velocity profile
was approximated with a polynomial of degree m. Tutty (1992) analyzed flow
over a non-uniform channel as a model for a constricted blood vessel. Flow
patterns were found for a range of Reynolds Number. The resulting waveform
shows strong vortex and complex wall shear stress distribution. The imposed
inflow is found to have an impact on the flow and stress distribution. Rosenfeld
and Einav (1993) attempts analytically to verify the results of numerical
analysis of flow over a constriction in a channel. Numerical simulation was
done with a fractional time step method and the resulting flow yield a series of
moving vortices. Factors which affects the validity of the solution, like mesh
size, time-step refinement studies, boundary conditions etc. were looked examined.
Cavalcanti and Carota (1995) theoretically investigated haemodynamics in the
early stages of the artherosclerotic process. It aims to provide more information
on the velocity flow field as induced by a mild stenosis (with area reduction of
only 2 per cent). It was hope that, with more high resolution velocimetry
coming up in the future, detection of stenosis-formation can be done even before
they become clinically significant, by virtue of the altered flow field. Huang et al.
(1995) investigated the cause for development of a theroscleroclerosis lesion by
doing a numerical study on flow in a rigid tube with an occlusion. The results
show a good correlation between regions of recirculation and the location of
lension. Rosenfeld and Einav (1995) further studied the effect of constriction
size on flow in a channel. It was found out that even for small constriction size,
large number of vortices was created downstream of the constriction and the
strength and number increases with area occlusion. However, the maximal size
and the propagation size of the vortices were noted by them to be independent
of the constriction size. It was hoped that the findings could help in non-
invasive detection of severity and formation of stenoses and the potential
damage to blood elements due to vortices. Damodaran et al. (1996) did a study
of steady laminar flow over multiple constrictions for Reynolds Number in the
range of 50–250 with 75 per cent area reduction for constrictions. Bluestein,
Niu, Schoephoerster & Dewanjee (1997) studied fluid flow through a model
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stenosis using both numerical and experimental methods with Reynolds Number
ranging from 300 to 3600. A progressively dense mesh grid size was adopted near
the wall and inlet region to capture the plug flow velocity profile at the inlet. Their
result showed that the flow is turbulent at the throat, leading to an axi-symmetical
and slowly circulating flow distal to the throat. As the Reynolds Number
increased, the recirculation region became more disturbed. Siouffi et al. (1998) also
did an experiment on flow through a stenosis. The flow region distal to the stenosis
is analyzed with a pulsed Doppler ultrasonic velocimeter. It was noted, besides the
usual flow parameters, the velocity field also depends on the flow waveform distal
to the constriction. Reese and Thompson (1998) utilized the laminar momentum
integral equation to simulate the shear stress in an arterial stenosis. Fluid flow
with up to Reynolds number of 1000 were simulated and analyzed. The reductions
of the constricted areas were between 44 per cent and 75 per cent. The final results
obtained compared well with known results from Poiseuille flow in a pipe.
Selvarajan et al. (1998) applied a perturbation method in analyzing the flow
through wavy-walled channels. This numerical study looked into the aspects of
the development of asymmetry at low Reynolds numbers. Computations at Re ¼
0:6 revealed that the initial development of asymmetry. Further values of
Re ¼ 0:06, 0.006, and 0.001 were used and it was found that the flow field gains
symmetry as Re reached 0.001. The Reynolds number and amplitude parameter
were noted to affect the skin friction on the wavy wall. These two parameters were
used to indicate the location of separation and reattachment of the fluid field.
Cieslicki and Lasowska (1999) studied the problem of a steady flow in a tube with
circumferential wall cavity with Reynolds number of 0, 50 and 200. Dash et al.
(1999) studied the mechanics of blood flow in a catherized curved artery with
stenosis through a mathematical analysis. The properties of the blood flow field
were studied in the presence of the curvature of the blood vessel, stenosis and
catheter. The Reynolds number considered ranges from 25 to 100. The combined
effect were studied and it concluded that the presence of stenosis was more
dominant in affecting the properties of the flow field. Deplano and Siouffi (1999)
carried out investigation on the effect of flows through stenosis both
experimentally and numerically. It was found that high shear stress was
produced at the throat.

For work in the 2000s, Hron et al. (2000) had carried out numerical work on
flow of shear-thinning fluids. A solver developed by Turek had been modified
for the purpose of this study. Shear-thinning fluids are fluids where the
viscosity decreases for the increasing shear rate. This phenomenon is
applicable to blood rheology. Reynolds number ranging from 1 to 1000 and an
aspect ratio (A ¼ 1:0 2 c) of 0 and 0.5 were chosen for the studies. Stroud et al.
(2000) studied on the various reasons that contributed to the plaque rupture.
The author believed that percentage reduction of the artery diameter was not
the only major cause of major heart abnormality, other factors such as the
stenosis morphology, surface irregularities, and the shape of the pulsatile
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waveform were also possible factors. This paper provided information on the
flow field when the stenosis was not axisymmetry. It was found that slight
changes to the curvature and surface irregularities made substantial impact on
the flow field.

In the above studies, few consider the influence of multiple constrictions in
the flow filed of a tube. In this present work, the detailed flow behaviour in a
double bell-shaped constricted tubes are studied. In order to provide accuracy
numerical solutions and better resolutions for flow field near the constrictions,
the physical domain of the double bell-shaped constricted tube is first
transformed into a rectangular solution domain using a generalized mapping
function. A progressively dense mesh was adopted near the wall region to
carefully track the flow information near the wall region as well as to better
capture the shear flow velocity profile at the wall. The dynamics of the flow
describing separation, reattachment, and the formation of recirculation eddy
were studied through the developing streamline, velocity vectors, vorticity and
pressure fields. Numerical results are obtained for the Reynolds number in the
range of 5 to 400 with constriction ratio of 1/3, 1/2 and 2/3 for a pair closely
spaced ðS ¼ 1:0Þ constrictions. The preliminary findings of the present study
on single constriction flow were also compared with available experimental
and numerical work of other investigators.

Problem formulation
The geometry of the constricted tube is shown in Figure 1(a). The constrictions
are modelled by 2 Guassian normal distribution curve, given by

r ¼ 1 2 c1 exp½2kðz 2 l1Þ
2� ðl1 2 lkÞ , z , ðl1 þ lkÞ

r ¼ 1 2 c2 exp½2kðz 2 l2Þ
2� ðl2 2 lkÞ , z , ðl2 þ lkÞ

r ¼ 1 elsewhere

ð1Þ

where c1 ¼ ðd 2 d1Þ=d and c2 ¼ ðd 2 d2Þ=d are the constriction ratios; l1; l2 are
the locations for the first and second constrictions respectively with respect
to the inlet location; lk defined the domain of the constrictions concerned. For
the present studies with k ¼ 4:0, lk ¼ 1:0 provides a smooth transition between
the solution domains. The constriction spacing is given by S ¼ l2 2 l1.

Taking the cylinder radius (a0) and the centreline velocity at inlet (v0) as the
characteristic length and velocity respectively, the following non-dimensional
variables are defined:

r* ¼
r

a0
; v* ¼

v

v0
;c* ¼

c

v0a2
o

; t* ¼
tv0

a0
; u* ¼

u

v0
; z* ¼

z

a0
; z* ¼

za0

v0
: ð2Þ

The unsteady governing equations are used to solve for the steady state flow
fields considered in this study. Constant fluid properties are assumed. The flow
is considered axis-symmetric and laminar. The dimensionless governing
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equations in the form of stream function-vorticity relations expressed in
cylindrical co-ordinates (r, u, z ) for the axis-symmetrical flow in the constricted
tubes [omitting the superscript * for brevity] are:

›z

›t
þ

›uz

›r
þ
›vz

›z
¼

1

Re

›2z

›r 2
þ

›2z

›z2
þ

1

r

›z

›r
2

z

r 2

� �
ð3Þ

z ¼
1

r
2

1

r

›c

›r
þ

›2c

›z2
þ

›2c

›r 2

� �
ð4Þ

u* ¼
1

r

›c

›z
and v* ¼ 2

1

r

›c

›r
ð5Þ

The Reynolds number is defined as Re ¼ v0a0=y . Axis-symmetrical flow
conditions are assumed. At the inlet, the velocity profile is assumed to be
Poiseuille, given by:

v

v0
¼ 1 2

r

a0

� �2

and u ¼ 0 ð6Þ

Figure 1.
Model of double bell-

shaped constrictions in
tubes
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The stream function and vorticity distribution at the inlet are derived from the
integration of the above velocity conditions. Along the solid tube walls, non-
slip conditions are assumed, i.e. v ¼ u ¼ 0.

The governing equation for the pressure solution is given by the Poisson
equation,

›2P

›z2
þ

›2P

›r 2
þ

1

r

›2c

›z2
¼

2

r 2

›2c

›z2

›2c

›r 2
2

1

r

›c

›r

� �
2

1

r 2

›c

›z

� �2

þ
›2c

›r›z

1

r

›c

›z
2

›2c

›r›z

� �" #

ð7Þ

where the non-dimensional pressure is P* ¼ P 2 P0=ry
2
0 , where P0 is the

static pressure at the inlet.
Along the tube wall, in the r-direction [omitting the superscript * for

brevity],
›P

›r
¼

1

Re

›z

›z
ð8Þ

In the z-direction,
›P

›z
¼ 2

1

Re

›z

›r
þ

z

r

� �
ð9Þ

Numerical solution
The cylindrical co-ordinate system (r, z ) as shown in Figure 1(a) is not suitable
for the accurate evaluation of boundary conditions on the curved surface of the
constricted physical solution domain. Hence, a generalised simple co-ordinate
transformation technique is used to transform the complex curvaceous tube
profile to a plain rectangular solution domain as shown in Figure 1(b). The new
co-ordinate system is

1 ¼ z;h ¼
r

f 1ðzÞ
ð10Þ

where f 1ðzÞ is a function used to describe the curved boundaries. Expressing
the partial derivatives in the rectangular transformed domain, the governing
transport equations become:

›z

›t
þ
›ðuzÞ

›h

›h

›r
þ

›ðvzÞ

›1

›1

›r
þ

›ðvzÞ

›h

›h

›z

¼
1

Re

›2z

›h2

›h

›r

� �2

þ
›h

›z

� �2
( )

þ
›2z

›h2

›1

›z

� �2
"

þ
›2z

›h›1
2
›h

›z

›1

›z

� �
þ

›z

›h

›2h

›z2
þ

1

r

›h

›r

	 

þ

›1

›z

›21

›z2

� �2

2
z

r 2

#
ð11Þ
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z ¼
1

r

›2c

›h2

›h

›r

� �2

þ
›h

›z

� �2
( )

þ
›2c

›12

›1

›z

� �2
" #

þ
›2c

›1›h
2
›h

›z

›1

›z

� �
þ

›c

›1

›21

›z2

� �
þ
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r

›h

›r

� ��
ð12Þ

›2P

›h2

dh

dz

� �2
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›2P
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þ 2

›2P

›h›1

dh
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d2h

dz2
þ
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þ
1

r

›P

›h
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r 2

›2c

›h2

dh

dz
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þ
›2c

›12
þ 2

›2c

›h›1

dh

dz
þ

›c

›h

d2h

dz2

 !
›2c

›h2

dh

dr

� �2

2
1

r

›c

›h

dh

dr

 !

2
1

r 2

›c

›h

dh

dz
þ

›c

›1

� �2

þ
›2c

›h2

dh

dz
þ

›2c

›h›1

� �
dh

dr
þ

›c

›h

d2h

drdz

� �

1

r

›c

›h

dh

dz
þ
›c

›1

� �
2

›2c

›h2

dh

dz
þ

›2c

›h›1

� �
dh

dr
þ

›c

›h

d2h

drdz

� �

2
66666666664

3
77777777775

ð13Þ

where z ¼ 1; r ¼ h f ð1Þ and d1=dr ¼ 0; d1=dz ¼ 1. The corresponding wall
pressure equations (8) and (9) and vorticity at the wall boundary can be
expressed as

›P

›h

dh

dr
¼

1

Re

›z

›h

dh

dz
þ

›z

›1

� �
ð14aÞ

›P

›h

dh

dz
þ

›P

›1
¼ 2

1

Re

›z

›h

dh

dz
þ

z

r

� �
ð14bÞ

zw ¼
1

r

›2c

›h2

›h

›r

� �2

þ
›h

›z

� �2
( )

þ
›2c

›1›h
2
›h

›z

›1

›z

� �
þ

›c

›h

›2h

›z2
2

1

r

›h

›r

� �" #
wall

ð14cÞ

The inlet boundary conditions for the stream-function is given by

cðhÞ ¼ cc þ

Z h

h¼0

vðhÞdh ð15Þ

The centreline stream function cc ¼ 0:0 at h ¼ 0 (corresponding to r ¼ 0). At
the wall, the stream function cw is given by (15) with h ¼ 1 (corresponding to
r ¼ 1).
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Velocities u and v at the wall are assumed zero.
The domain in the 12 h co-ordinate system as defined by Equation (10) is a

rectangular region. In order to obtain better resolution of the solution near the
wall regions while preserving the second order accuracy of the finite difference
scheme, the rectangular solution domain is overlaid with a non-uniform mesh
with the grid generator as shown in Figure 1(b) and given by

F3 ¼ ð2=pÞsin21½ðhþ 0:5Þ1=2� ð16Þ

At the node points, the finite difference solution to Equation (11) and its
boundary conditions are obtained through an Alternating Direction Implicit
(ADI) procedure by Samarskii and Andrew (1963). The Successive Over
Relaxation (SOR) method with a relaxation parameter v ¼ 1:1 is used to solve
the vorticity-stream function equation (12). The pressure field described by
equation (13) with its associated boundary conditions are obtained directly
from the streamline field. All spatial derivatives are approximated by second-
order-accurate central differences. The convective terms in equation (11) are
approximated by the second-order upwind differencing method. Three points
backward and forward difference formulae are used for the derivatives at the
boundaries. The vorticity boundary values are obtained by considering the
Taylor series expansion of c into the solution region and taking into
consideration the c and the velocity at the boundary. Mesh independence
studies were made and the final optimum mesh size arrived at for all the
solutions presented here is 61 £ 451: For the present investigations, the
optimum mesh size is the minimum computational mesh points used where the
most severe flow condition of Re ¼ 400 with constriction of 2/3 and s¼1.0
produce results that are consistent with the estimated experimental results
obtained by other investigators. The steady state solution of the equations (11)
and (12) is said to have converged when a difference less than 0.001 per cent of
a referenced c and z is detected for a consecutive 100 iterations. This has
proved satisfactory. The streamfunction contours, the velocity fields, the
vorticity contours and the pressure field are noted to be steady after the above
criteria are satisfied. Details of the above numerical methods are also described
in Lee (1994, 1998).

Results and discussions
Most the existing related analytical, numerical and experimental studies are for
fluid flow through single constrictions. Very few considered the influence of the
upstream constriction on the flow field near the downstream constriction.
Thus, for the purpose of validations, the present model was initially analysed
for single constriction by setting S ¼ 1 or c2 ¼ 0. Figure 2 showed that for
c2 ) 0 or by increasing the constriction spacing S ) 1; flow over a single
constriction is obtained. This study is similar to that of Lee and Fung (1970)
where numerical results were obtained for Reynolds number in the range of
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0 to 25. Their streamlines, vorticity and velocity profiles show striking similarities
with the present investigations in the available Reynolds number range of 5 to
25. At Re ¼ 9:9; an eddy was observed near the downstream of the constriction
by Lee and Fung. Similar eddy was also observed from the present study at
Re ¼ 10: For the present investigation with S ¼ 1 (Figure 3(b)), the peak wall
vorticity value is 24.02 at Reynolds number of 5, and is increased to 57.31 when
the Reynolds number is increased to 200. Lee and Fung obtained maximum
wall vorticity of 28.5 and 36.5 at Reynolds numbers of 10 and 25, respectively.
The corresponding values obtained in the present investigation are 24.62 and
29.84. Another similar study was performed by Deshpande et al., 1976. Their

Figure 2.
Development of single
constriction flow from

double constrictions flow
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results were also presented on the same curve. The difference is believed to be
due to the manner in which the outlet boundary condition was formulated. Lee
and Fung assumed the outflow was Poiseuille and Deshpande, Giddens and
Mabon assumed similar Poiseulle flow at z ) 1; whilst the present study
assumed an unrestrictive flow at the outlet and allows the flow profile to
develop on its own. This is achieved through a series expansion of the flow
field from the inner region towards the out flow region so that a steady and
converged solution at the out flow boundary is obtained. Young and Tsai (1973)
conducted a series of steady flow experiments for various hydrodynamic factors
such as pressure drop, separation and turbulence on constriction flow.
Comparisons of the present method of computations with the experimental work
of Young & Tsai (1973) (Figure 3(a) and 3(c)) and Forrester and Young (1970)
(Figure 3(a)) on single constriction flow showed very good agreement.

Characteristics of (i) velocity vectors, (ii) streamline contours, (iii) pressure
contours, (iv) centreline and wall pressure distribution, (v) vorticity contours,
(vi) wall vorticity distribution and their associated recirculating flow region,
maximum wall vorticity and pressure losses characteristics are investigated for
constriction c1; c2 of (a) 1/3, (b) 1/2 and (c) 2/3 respectively for Re ¼ 5 (Figure 4),
Re ¼ 25 (Figure 5) and Re ¼ 50 (Figure 6). For the Reynolds number of 5–400
considered here, a ring vortex might be developed downstream of a stenosis
caused by flow separation. For Reynolds number greater than 400, numerical
experiments showed signs that the flow will become unstable and three dimensional
effects will be developed, especially when the constrictions are severe.

At a Re ! 5 (Figure 4), flow around each constriction of the double
constrictions tube behaves similar to an independent single constriction tube
without much interference of the flow from each other. Hence the vorticity
contours are also similar near each of the constriction. No recirculation region
appears in the constricted tube. As the Re increases, a recirculation eddy
generally appears at downstream of each of the constrictions. As Re is further
increased (Figure 5), recirculation regions appears for the constrictions
considered here. The vorticity fields are substantially altered and the closed
contours of the vorticity distribution are seen advected from each constrictions
to the downstream. The recirculatory eddy from the upstream constriction is
also spreaded downstream and affect the flow passing through the downstream
constriction. A recirculation zone is than formed which fills part of the valley
region between the two constrictions. Once the recirculation flow field between
the constrictions is established, there is a separation streamline that divides the
flow into two parts: the recirculating flow field between the two constrictions
and the main flow field near the centre of the tube with relatively straight and
parallel streamlines.

Characteristics of the flow through constrictions can also be described by
the velocity vector in the tube. The velocity vectors in Figures 4(i)–6(i) show
that as the fluid approaches the converging portion of the constriction, the
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Figure 3.
Comparisons with

available results of
others

Numerical study
of fluid flow

269



Figure 4.
(a) Re ¼ 5; c1 ¼ c2 ¼ 1=3
(i) Velocity vectors;
(ii) Streamlines; (iii)
Pressure contours;
(iv) Centreline (Pc) and
Wall (Pw) pressures;
(v) Vorticity contours;
(vi) Wall vorticity (zw)
(b) Re ¼ 5; c1 ¼ c2 ¼
1=2 (i) Velocity vectors;
(ii) Streamlines;
(iii) Pressure contours;
(iv) Centreline (Pc) and
Wall (Pw) pressures;
(v) Vorticity contours;
(vi) Wall vorticity (zw)
(c) Re ¼ 5; c1 ¼ c2 ¼ 2=3
(i) Velocity vectors;
(ii) Streamlines;
(iii) Pressure contours;
(iv) Centreline (Pc) and
Wall (Pw) pressures;
(v) Vorticity contours;
(vi) Wall vorticity (zw)
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Figure 5.
(a) Re ¼ 25; c1 ¼ c2 ¼

1=3 (i) Velocity vectors;
(ii) Streamlines;

(iii) Pressure contours;
(iv) Centreline (Pc) and

Wall (Pw) pressures;
(v) Vorticity contours;

(vi) Wall vorticity (zw) (b)
Re ¼ 25; c1 ¼ c2 ¼ 1=2

(i) Velocity vectors;
(ii) Streamlines; (iii)

Pressure contours; (iv)
Centreline (Pc) and Wall

(Pw) pressures;
(v) Vorticity contours;
(vi) Wall vorticity (zw)
(c) Re ¼ 25; c1 ¼ c2 ¼

2=3 (i) Velocity vectors;
(ii) Streamlines;

(iii) Pressure contours;
(iv) Centreline (Pc) and

Wall (Pw) pressures; (v)
Vorticity contours;

(vi) Wall vorticity (zw)
(Continued)
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velocity increases in magnitude and the vectors point towards the axis of the
tube. The formation of the recirculation region in the flow is indicated by the
negative velocity vectors in a reversed flow. Thus, the profile distribution along
an arterial vessel can be used to improve ways of detection of stenotic sites
(Cavalcanti & Carota (1995)). The pressure characteristics are related to the
velocity characteristics. The pressure distributions along the tube wall and
along the centreline of the tube shown in Figures 4(iv) & (v) – 6(v) & (v). In
general, there is a rapid fall in the pressure as the constriction is approached,
with the pressure recovery after the second constriction taking place over a
greater length. The wall vorticity values which are also related to the velocity
distribution. The wall vorticity in turn is related to the tube wall shearing
stress ½tw ¼ ðryV1=a0Þzw�: As shown in the corresponding Figures 4(vi)–
6(vi), the magnitude of the wall vorticity values increase rapidly when the flow
approaches the constriction and reaching a peak value near the maximum
constricted area. At a higher Reynolds number, the peak wall vorticity value is
found slightly upstream of the maximum constricted area. Downstream of this
peak value, the wall vorticity decreases rapidly and will reverse to negative
values when separation begins at the wall of the tube. It is observed that the
peak wall vorticity value increases with increasing Reynolds number. The peak
wall vorticity value tends to shift upstream as the Reynolds number is
increased. The negative wall vorticity values also give an indication of the
extend of the recirculation region in the constricted flow. For Reynolds number
greater than a critical value for a given constriction, negative wall vorticity
values are found at the tube surface due the existence of the recirculation eddy
downstream of the constriction. The negative magnitudes of the wall vorticity
values in the recirculation region increases when the Reynolds number is
increased. For the present study with Reynolds number approaching 400,
there is a large region of recirculatory flow in the constricted tube as evidence
by the extent of negative wall vorticity distribution along the tube wall
(Figure 7(a)–(d)). With S ¼ 1; the recirculation eddy formed downstream of the
first constriction has a deminishing effects on the generation of vorticities by
the main stream near the second constriction area. The main stream approaching
the second constriction wall is straightened by the recirculation region formed
between the valley. Hence the maximum wall vorticity generated by the first
constriction is always greater than the maximum wall vorticity generated by
the second constriction. For constrictions of 1/3, 1/2 and 2/3, the maximum wall
vorticity values obtained when the flow passes through the second constriction
are always lower than those obtained in the corresponding cases for a
constriction spacing S ¼ 1 or flow with single constriction.

From the above, it can be seen that for Re , critical Re, the 1st constriction
has no effect on the 2nd constriction and they behaves as independent entities.
As Re rises above the critical Re and beyond, flow separation and flow
interference between the two constrictions starts to occur. Eddies and
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Figure 6.
(a) Re ¼ 50; c1 ¼ c2 ¼

1=3 (i) Velocity vectors;
(ii) Streamlines; (iii)
Pressure contours;

(iv) Centreline (Pc) and
Wall (Pw) pressures; (v)

Vorticity contours;
(vi) Wall vorticity (zw) (b)

Re ¼ 50; c1 ¼ c2 ¼ 1=2
(i) Velocity vectors;
(ii) Streamlines; (iii)

Pressure contours; (iv)
Centreline (Pc) and Wall

(Pw) pressures;
(v) Vorticity contours;

(vi) Wall vorticity (zw) (c)
Re ¼ 50; c1 ¼ c2 ¼ 2=3
(i) Velocity vectors; (ii)

Streamlines; (iii) Pressure
contours; (iv) Centreline

(Pc) and Wall (Pw)
pressures; (v) Vorticity

contours; (vi) Wall
vorticity (zw)
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Figure 7.
(a) Re ¼ 100; Figure
7(a)–(d) c1 ¼ c2 ¼ 1=2
(i) Streamlines; (ii) Wall
vorticity (zw); (iii)
Pressure contours; (iv)
Centreline (Pc) and Wall
(Pw) pressures (b) Re ¼
200; c1 ¼ c2 ¼ 1=2
(i) Streamlines; (ii) Wall
vorticity (zw) (iii)
Pressure contours; (iv)
Centreline (Pc) and Wall
(Pw) pressures (c) Re ¼
300; c1 ¼ c2 ¼ 1=2
(i) Streamlines; (ii) Wall
vorticity (zw) (iii)
Pressure contours;
(iv) Centreline (Pc) and
Wall (Pw) pressures (d)
Re ¼ 400; c1 ¼ c2 ¼ 1=2
(i) Streamlines; (ii) Wall
vorticity (zw);
(iii) Pressure contours;
(iv) Centreline (Pc) and
Wall (Pw) pressures
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recirculation regions develop after the narrowest point of the constriction and
they separated from the main flow, with reattachment occurring further
downstream. The reattachment points tend to extend downstream as Re
increases. Recirculation regions are generally slow moving flow separated from
the main stream, which can be seen from the streamline and velocity vector
plots. At higher Re, due to the presence of the 2nd constriction, the recirculation
regions generated by the first constriction will be trapped within the entire
valley while that generated by the 2nd constriction will extend downstream.
The velocity vector plots showed negative vectors in such recirculation regions.
The convergence of the velocity vector heads as the flow approach the constriction
and subsequent fanning out of the vectors showed adverse pressure gradient
conducive to the formation of recirculation regions. Since the recirculation regions
are trapped between the valley created by the 2 constrictions as Re increases, they
straightened the flow approaching the 2nd constriction, resulting in rounder
velocity profiles and lower wall vorticity at the downstream constriction.

The wall shear stress, tw, is an important parameter in atherosclerosis and
is directly related to the wall vorticity (zw). Figures 4(vi)–6(vi) show the nature
of the wall shear stress variation in the axial direction for constriction ratios of
1/3, 1/2 and 2/3. The peak value of tw increases with an increase in Reynolds
number. The wall shear stress value increases rapidly as the flow approaches
the constriction and reaches a peak value near the maximum constricted area.
Downstream of the constriction tw decreases rapidly and reverses sign which
indicates a separation in the flow near the wall of the tube. An increase in
Reynolds number causes the magnitude of the negative tw value to increase
downstream of the constriction. This is due to an increase in the size of the
recirculation region. The wall vorticity is similar to tw as they are directly
related in Newtonian flows. The maximum value of the wall shear generated by
the first constriction is always greater than the maximum value of the wall
shear generated by the second constriction. This is because the recirculation
eddy formed downstream of the first constriction has a diminishing effect on
the vortices generated by the main stream near the second constriction area.

Figure 8 shows the pressure losses w.r.t. the constrictions and Reynolds
number. For Re , critical Re of a constriction value, the fall in pressure (or loss
in energy) as the flow encounter the constrictions are the same, but as Re
increases above critical Re, it can be seen that the fall in pressure is smaller in
the 2nd constriction. A greater drop in pressure is seen as more energy being
used up to overcome a greater resistance presented by the constriction.
Mentioned in the earlier discussion, the flow is being straightened after passing
through the 1st constriction by the recirculation region trapped within the
valley between the 2 constrictions and this enables the flow to pass more
“smoothly“ with less resistance through the 2nd constriction, hence resulting in
lower pressure loss at the 2nd constriction. Figures 4–7 also shows that the
wall and centreline pressure for flow corresponding to Re , critical Re, both
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centreline and wall pressure are similar except at the constriction regions. The
steeper gradient of the wall pressure plots over the constrictions as compared
to the rest of the tube implies that pressure loss is greater at the wall. After a
steep drop in wall pressure, there usually fellows a period of pressure recovery
signalled by a rise in pressure. The graph shows that for Re @ critical Re, the
pressure recovery phase after the 2nd constriction is stretched out over a much
longer distance downstream compared to that of Re , critical Re. The pressure

Figure 8.
Dimensionless pressure
drop across constrictions
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flow relationship is also one means of obtaining information about the severity of a
coronary stenosis. For a given Reynolds number, the presence of a constriction
increases the resistance that the flow experiences. Figure 8 generally showed
that the pressure drop across two constrictions with spacing S ¼ 1:0 is always
less than twice the pressure drop over the first constriction. The above
Investigations showed that the most important factors, which influence the
pressure drop across multiple stenoses, are the cross-sectional area (diameter)
reduction of each stenosis, the distance S between the stenosies and the
Reynolds number. Investigations show that if the consecutive constrictions
was closed enough, interference occurs with the normal expansion of the jet
emerging from the proximal stenosis, changing the pressure drop at certain
flow rates. The vortex behind the neighbouring stenosis appears to play an
important role in the mutual interaction of both stenoses on the flow.

Figure 9 further shows details of the maximum wall vorticity plot for the
three constriction settings at various Re. As can be seen from the figure, the
increase in wall vorticity is more than double when the constriction ratio
increased from 1/3 to 1/2 and is around 10 times as the constriction ratio rises to
2/3. This implies that the shear stress experienced at the wall may tripled and
rises to 10 times for the constriction ratios increasing from 1/3 to 1/2 and from
1/3 to 2/3 respectively. There is an exponential rise in wall vorticity as the
constriction ratio increases. Similarly, Figure 9 also shows that the maximum
wall vorticity increases with increasing Reynolds number and constriction
ratios. The peak wall vorticity values for the upstream constriction are the
same as the corresponding cases for a single constriction. However, the peak
wall vorticity generated by the first constriction is always greater than the
peak wall vorticity generated by the second constriction. This difference
indicates flow interference. The recirculation eddy formed downstream of the
first constriction has a diminishing effect on the generation of vorticity by the
main stream near the second constriction area. The main stream approaching
the second constriction wall is straightened by the recirculation region formed
between the valley.

Figure 10 shows the separation and reattachment points of the recirculation
eddies formed downstream of each of the constrictions for different constriction
ratios. It can be seen that when the Reynolds number is increased, the
separation point on the surface of the constriction where the recirculation eddy
begins to form, moves slightly upstream of the throat. The reattachment point
where the recirculation eddy terminates on the surface of the constricted tube,
spread downstream of the throat. When a steady recirculation region is
established between the two constrictions, there is then little change to the
separation and reattachment points for the flow between the valley region.
However, the reattachment point of the downstream constriction spread further
as the Reynolds number is increase and will eventually approaches that of a
single constriction corresponding to S ¼ 1:
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Conclusion
Numerical solutions to the flow fields in the neighbourhood of double symmetrical
bell-shaped constrictions in a circular cylindrical tube are obtained for a Reynolds
number range of 5–400. The effect of the proximity of one constriction to another
in term of a dimensionless spacing S ¼ 1 is investigated. For the present study
with a constriction of 1/3, 1/2 and 2/3, it is found that the formation of
recirculation eddy occurs at downstream of the constriction when the Reynolds
number is above a critical Reynolds number depending on the constriction
magnitudes. For c ¼ 1=3; 1/2 and 2/3, this critical Re is approximately at 5, 10
and 25, respectively. As the Reynolds number is increased above this critical
Re, the point of separation of the eddy moves upstream of the constriction; and
the point of reattachment of the recirculating flow moves downstream. At high

Figure 9.
Maximum wall vorticity
at first and second
constrictions
[(zw1)max; (zw2)max]
(a) c1 ¼ c2 ¼ 1=3;
(b) c1 ¼ c2 ¼ 1=2;
(c) c1 ¼ c2 ¼ 2=3
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Reynolds numbers, a recirculation zone exists which fills the valley region
between the two constrictions. A separation streamline divides the flow in
between the two constrictions into two parts: the recirculation region in the
valley of the two constrictions, and a relatively straight and parallel flow near
the centre of the tube. The net effects of these flow pattern is to reduce the
maximum wall vorticity values downstream of the second constriction. The
effects on the upstream vorticity and streamline pattern of the first constriction
is small. The centreline pressure and wall pressure distribution and pressure
losses through the flow were also very much affected by the flow pattern
generated by the existence of the second constriction. As the flow approaches
the narrowest section of the tube, it is accelerated and the maximum centreline
velocity occurs slightly downstream of the constriction. The centreline velocity
does not necessarily recover fully after passing through the first constriction
before reaching the second constriction. Hence, the maximum centreline
velocity not only shifts downstream as the Reynolds number increases, the
maximum value at the second constriction is also higher than the maximum
value at the first constriction. On the contrary, the local maximum wall
vorticity value always occurs slightly upstream of each of the constrictions.
The maximum wall vorticity at the second constriction is always less than the
maximum wall vorticity value at the first constriction due to the influence of
the recirculation flow region formed between the two constrictions. For the
above flow, the major part of the pressure drop across the constrictions occurs
just in front of each of the constrictions. The minimum pressures occurs just
downstream of each of the constrictions.
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